Pressure-induced Transformations of Dense Carbonyl Sulfide to Singly Bonded Amorphous Metallic Solid Journal Article uri icon

DCO ID 11121/9324-5622-6295-6239-CC

is Contribution to the DCO

  • YES

year of publication

  • 2016

abstract

  • The application of pressure, internal or external, transforms molecular solids into non-molecular extended network solids with diverse crystal structures and electronic properties. These transformations can be understood in terms of pressure-induced electron delocalization; however, the governing mechanisms are complex because of strong lattice strains, phase metastability and path dependent phase behaviors. Here, we present the pressure-induced transformations of linear OCS (R3m, Phase I) to bent OCS (Cm, Phase II) at 9 GPa; an amorphous, one-dimensional (1D) polymer at 20 GPa (Phase III); and an extended 3D network above ~35 GPa (Phase IV) that metallizes at ~105 GPa. These results underscore the significance of long-range dipole interactions in dense OCS, leading to an extended molecular alloy that can be considered a chemical intermediate of its two end members, CO2 and CS2.

volume

  • 6