The Carbon Trap: Carbon Dioxide Injections Stimulate Peculiar Subsurface Microbial Communities Project Update uri icon

DCO ID 11121/4942-8355-6280-6675-CC

Update Text

  • Carbon capture and storage (CCS) is a strategy that aims to offset carbon dioxide created from burning fossil fuels by injecting this gas directly into the subsurface. In the case of mineral storage, the injections target certain types of volcanic rocks, so that the carbon dioxide will react with underground minerals to form long-lasting carbonate compounds. The efficiency and hence the long-term viability of mineral storage, however, is still in question. 

    One aspect of CCS that some researchers have overlooked is the role of subsurface microbes. DCO members Rosalia Trias, Bénédicte Ménez, Paul le Campion, Aurélien Lecoeuvre, and Emmanuelle Gérard, (all at the Institut de Physique du Globe de Paris, France), examined how native microbial communities responded to the injection of carbon dioxide into a CCS pilot site adjacent to an Icelandic power plant. In a new paper in Nature Communications [1], the researchers describe how the injections created successive blooms in certain microbial species. The results suggest that, rather than fully solidifying into carbonate minerals, some of the carbon dioxide became bacterial biomass, which may impact the long-term success of carbon storage.

    Read more.