Tracking hidden organic carbon in rocks using chemometrics and hyperspectral imaging Journal Article uri icon

DCO ID 11121/4914-3818-7948-2615-CC

is Contribution to the DCO

  • YES

year of publication

  • 2018

abstract

  • Finding traces of life or organic components of prebiotic interest in the rock record is an appealing goal for numerous fields in Earth and space sciences. However, this is often hampered by the scarceness and highly heterogeneous distribution of organic compounds within rocks. We assess here an innovative analytical strategy combining Synchrotron radiation-based Fourier-Transform Infrared microspectroscopy (S-FTIR) and multivariate analysis techniques to track and characterize organic compounds at the pore level in complex oceanic rocks. S-FTIR hyperspectral images are analysed individually or as multiple image combinations (multiset analysis) using Principal Component Analyses (PCA) and Multivariate Curve Resolution – Alternating Least Squares (MCR-ALS). This approach allows extracting simultaneously pure organic and mineral spectral signatures and determining their spatial distributions and relationships. MCR-ALS analysis provides resolved S-FTIR signatures of 8 pure mineral and organic components showing the close association at a micrometric scale of organic compounds and secondary clays formed during rock alteration and known to catalyse organic synthesis. These results highlights the potential of the serpentinizing oceanic lithosphere to generate and preserve organic compounds of abiotic origin, in favour of the hydrothermal theory for the origin of life.

volume

  • 8

issue

  • 2396