Volatile flux from subduction zone volcanoes: Insights from a detailed evaluation of the fluxes from volcanoes in Japan Journal Article uri icon

DCO ID 11121/1095-2803-7787-5288-CC

is Contribution to the DCO

  • YES

year of publication

  • 2013


  • Global volatile fluxes from subaerial volcanoes at subduction zones were estimated based on a compilation of fluxes from various sources, including persistent degassing, hot and cold springs, soil degassing, and eruptions. Because worldwide comprehensive datasets are not available, especially for diffuse volatile discharges, volatile fluxes from Japan arcs were estimated based on detailed datasets, and the regional fluxes were extrapolated to the global flux with consideration of the regional characteristics of volcanic volatile compositions, which were estimated based on volcanic gas compositions of persistent degassing. The estimated global fluxes indicate that persistent degassing is the major source of volatiles, especially for S with a contribution of 80%. Diffuse discharges and persistent degassing are similarly important sources of H2O, CO2, and Cl, but the contribution of explosive eruptions is less than 15% for all the volatiles. The estimates of diffuse degassing fluxes include large errors due to limited data. However, the potential impact of these sources on the global flux indicates the importance of further studies to quantify these fluxes. The volatile budget of subduction zone volcanism was evaluated by comparing the estimated volatile fluxes, the volatile contents in the crust, and the primitive magma volatile contents. The contribution of volatiles remaining in the crust are not significant; however, consideration of lower crust foundering significantly alters the volatile budget estimate because the primitive magma supply rate should be significantly increased to account for the lower crust foundering.

associated DCO Team


  • 268