When water meets iron at Earth's core–mantle boundary Journal Article uri icon

DCO ID 11121/7817-3655-2219-3698-CC

is Contribution to the DCO

  • YES

year of publication

  • 2017


  • Hydrous minerals in subducted crust can transport large amounts of water into Earth's deep mantle. Our laboratory experiments revealed the surprising pressure-induced chemistry that, when water meets iron at the core–mantle boundary, they react to form an interlayer with an extremely oxygen-rich form of iron, iron dioxide, together with iron hydride. Hydrogen in the layer will escape upon further heating and rise to the crust, sustaining the water cycle. With water supplied by the subducting slabs meeting the nearly inexhaustible iron source in the core, an oxygen-rich layer would cumulate and thicken, leading to major global consequences in our planet. The seismic signature of the D″ layer may echo the chemical complexity of this layer. Over the course of geological time, the enormous oxygen reservoir accumulating between the mantle and core may have eventually reached a critical eruption point. Very large-scale oxygen eruptions could possibly cause major activities in the mantle convection and leave evidence such as the rifting of supercontinents and the Great Oxidation Event.


  • 4


  • 6